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Abstract
A class of first-order partial differential equations is obtained compatible with
a (2 + 1)-dimensional linear diffusion equation with a nonlinear source term.
We will show that if the source term is quasilinear, then compatible equations
are quasilinear. Furthermore, we obtain diffusion equations with source terms
that admit non-quasilinear compatible equations.

PACS numbers: 02.30.Jr, 02.40.Vh
Mathematics Subject Classification: 35K57, 58J70

1. Introduction

Symmetry analysis has played a fundamental role in the construction of exact solutions to
nonlinear partial differential equations. Based on the original work of Lie [17] on continuous
groups, symmetry analysis provides a unified explanation for the seemingly diverse and ad
hoc integration methods used to solve ordinary differential equations. For equations in (1 + 1)

dimensions, one seeks the invariance of a differential equation

�(t, x, u, ut , ux, utt , utx, . . .) = 0, (1.1)

under the group of infinitesimal transformations

t = t + T (t, x, u)ε + O(ε2),

x = x + X(t, x, u)ε + O(ε2), (1.2)

u = u + U(t, x, u)ε + O(ε2).

This leads to a set of determining equations for the infinitesimals T ,X and U which, when
solved, gives rise to the symmetries of (1.1). Once a symmetry is known for a differential
equation, invariance of the solution leads to the invariant surface condition

T ut + Xux = U. (1.3)
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Solutions of (1.3) lead to a solution ansatz, which substituted into equation (1.1) leads to a
reduction of the original equation. A generalization of the so-called classical method of Lie was
proposed by Bluman and Cole [3], which today is commonly referred to as the ‘nonclassical
method’. Their method seeks invariance of the original equation (1.1) augmented with the
invariant surface condition (1.3). At the present time, there is extensive literature on the
subject and we refer the reader to the books by Bluman and Kumei [5], Olver [22] and Rogers
and Ames [27].

A particular class of partial differential equations that has benefited tremendously from
this type of analysis are nonlinear diffusion equations. For example, the nonlinear diffusion–
convection equation

ut = ∇ · (D(u)∇u) − K ′(u)uz (1.4)

has a variety of applications to porous media, including displacement of one liquid by another
(Fokas and Yortsos [10]), unsaturated flow (Klute [16]) and the transport of a solute with
absorption to pore surfaces (Rosen [28]). In the context of hydrological flows, D(u) is
the concentration-dependent diffusivity and based on Darcy’s law (Klute [16]), K(u) is the
concentration-dependent hydraulic conductivity. It has been used by Clothier et al [7] in the
case of D(u) = const. and K(u) = quadratic for unsaturated flows in field soils and after
suitable translation and scaling (1.4) becomes

ut = ∇2u − uuz, (1.5)

which is known as Burgers’ equation. In one space dimension (1.5) is known to be linearizable;
however, this does not extend to higher dimensions [6].

A second example is the model

nt = D∇2n + �|∇n|2 + λnG(n, nm) (1.6)

introduced by Grimson and Barker [15] for the spatiotemporal growth of bacterial colonies
with local and nonlocal modes of growth. Here, n is the local microbial number density, D is
the diffusion coefficient, and � and λ are the constants. The presence of the nonlinear terms in
(1.6) represents (i) the local growth of cell number up to a maximum of nm (the third term on
the right-hand side of (1.6)) and (ii) the nonlocal growth occuring at concentration gradients
required in systems where the diffusion constant is sufficiently small with respect to the local
growth so that the colony cannot spread by diffusion alone (the second term on the right-hand
side of (1.6)). Further examples can be found in the evolution of grain boundaries [30] and
image processing [24] but the diffusion there tends to be nonlinear.

Symmetry properties of equations such as (1.4) and (1.6) have been considered by a
number of authors. Two- and three-dimensional reaction–diffusion equations of the form

ut = ∇ · (D(u)∇u) + Q(u) (1.7)

were considered by Dorodnitsyn et al [8] and by Galaktionov et al [12] who gave a list of
diffusion and source terms admitting a classical symmetry. Nonclassically, equation (1.7) was
first considered by Goard and Broadbridge [14] in two spatial dimensions who showed that
nonclassical symmetries exist. These were further exploited by Gandarias and del Aguila [13]
who provide many reductions of (1.7) in the case of D = 1. In the case of higher dimensional
diffusion equations with convection, i.e. equation (1.4), a classical analysis was performed by
Edwards and Broadbridge [9]. We also note the symmetry analysis performed by Bindu et al
[4] on

ut = uxx + uyy +
m

1 − u

(
u2

x + u2
y

)
+ u(1 − u), (1.8)
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which led to its linearization in the case of m = 2. Recently, a symmetry analysis of the
equation

ut = uxx + uyy + Q(u, ux, uy) (1.9)

was conducted by Arrigo, Suazo and Sule [2], where it was shown that a variety of source
terms exist that admit a nontrivial symmetry (those symmetries not obtained by inspection).

While both the classical and nonclassical symmetry methods have had tremendous success
when applied to a wide variety of physically important nonlinear differential equations, there
exist exact solutions to partial differential equations that cannot be explained using symmetry
analysis. For example, Galaktionov [11] showed that the PDE

ut = uxx + u2
x + u2 (1.10)

admits the solution

u = a(t) cos x + b(t), (1.11)

where a(t) and b(t) satisfy the system of ODEs:

ȧ = −a + 2ab, ḃ = a2 + b2. (1.12)

A classical symmetry analysis of equation (1.10) leads to only translational symmetries in
space and time. The associated invariant surface condition is

ut + cux = 0, (1.13)

where c is a constant and (1.13) will clearly not give rise to solution (1.11). A nonclassical
symmetry analysis with T = 1 gives rise to the same invariant surface condition while with
T = 0 gives rise to solving the original equation (see, for example, Zhdanov and Lahno [31]).

However, Olver [23] was able to show that the solution obtained by Galaktionov can be
obtained by the method of differential constraints. By appending (1.10) with

uxx − cot xux = 0, (1.14)

he showed that (1.11) could be obtained.
Differential constraints or compatibility of partial differential equations have been around

for quite some time and date back to the pioneering work of Riquier (1893) and Cartan (1901)
(see Pommariet [25] for further details and historical references) and have been successfully
applied to equations in fluid mechanics (see Meleshko [19] and the references within) and
second-order evolution equations in (1+1) dimensions (see, for example Olver [23]). However,
only recently has the connection been made with the nonclassical method of symmetry analysis
(see Pucci and Saccomandi [26], Seiler [29], Arrigo and Beckham [1], Nui and Pan [20], and
Nui, Huang and Pan [21]).

In this paper, we consider the compatibility between the (2 + 1) dimensional reaction—
diffusion equation

ut = uxx + uyy + Q(u, ux, uy), (1.15)

and the first-order partial differential equation

ut = F(t, x, y, u, ux, uy), (1.16)

in which we prove the following.

Theorem. Every equation which is equivalent to equation (1.15) with a quasilinear source
term Q is compatible with (1.16) if F is quasilinear and (ii) imposing the condition of non-
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quasilinearity

(Fpp, Fpq, Fqq) �= (0, 0, 0), (1.17)

every equation which is equivalent to (1.15) with a source term of the form

Q = cu + G(ux, uy),

is compatible with equations of the form

ut = cu + G(ux, uy),

where c is an arbitrary constant and G(p, q) is a function satisfying Gpp + Gqq = 0.

2. First-order compatibility

Compatibility between (1.15) and (1.16) gives rise to the compatibility equation constraints

Fpp + Fqq = 0, (2.1a)

Fxp − Fyq + pFup − qFuq + (F − Q)Fpp = 0, (2.1b)

Fxq + Fyp + qFup + pFuq + (F − Q)Fpq = 0, (2.1c)

−Ft + Fxx + Fyy + 2pFxu + 2qFyu + 2(F − Q)Fyq + (p2 + q2)Fuu + 2q(F − Q)Fuq

+ (F − Q)2Fqq + QpFx + QqFy + (pQp + qQq − Q)Fu

−pQuFp − qQuFq + FQu = 0. (2.1d)

Eliminating the x and y derivatives in (2.1b) and (2.1c) by (i) cross differentiation and
(ii) imposing (2.1a) gives

2Fup + (Fp − Qp)Fpp + (Fq − Qq)Fpq = 0, (2.2a)

2Fuq + (Fp − Qp)Fpq + (Fq − Qq)Fqq = 0. (2.2b)

Further, eliminating Fup and Fuq by again (i) cross differentiation and (ii) imposing (2.1a)
gives rise to

(2Fpp − Qpp + Qqq)Fpp + 2(Fpq − Qpq)Fpq = 0, (2.3a)

(Qpp − Qqq)Fpq + 2QpqFqq = 0. (2.3b)

Solving (2.1a), (2.3a) and (2.3b) for Fpp, Fpq and Fqq gives rise to two cases:

(i)Fpp = Fpq = Fqq = 0, (2.4a)

(ii)Fpp = 1
2 (Qpp − Qqq), Fpq = Qpq, Fqq = 1

2 (Qqq − Qpp). (2.4b)

As we are primarily interested in compatible equations that are more general than quasilinear,
we omit the first case. In the second case, we see that if Q is of the form

Q = f0(u)(p2 + q2) + f1(u)p + f2(u)q + f3(u), (2.5)

for arbitrary functions f0 − f3, then

Qpq = 0, Qpp − Qqq = 0,

identically and from (2.4b) we obtain

Fpp = Fpq = Fqq = 0.
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Thus, for source terms of form (2.5), we only have quasilinear compatible equations.
Furthermore, since equations with this type of source term are equivalent to equations with
source terms with f0 = 0 (equivalent in the sense that we can transform between equations
with a suitable transformation u = φ(ũ)), we can set f0 = 0 without loss of generality. Thus,
for quasilinear source terms, F is linear in p and q giving our first result. Hereinafter, we will
impose the non-quasilinearity condition (1.17).

If we require that the three equations in (2.4b) be compatible, then to within equivalence
transformations of the original equation, Q satisfies

Qpp + Qqq = 0. (2.6)

Using (2.6), we find that (2.4b) becomes

Fpp = Qpp, Fpq = Qpq, Fqq = Qqq, (2.7)

from which we find that

F = Q(u, p, q) + X(t, x, y, u)p + Y (t, x, y, u)q + U(t, x, y, u), (2.8)

where X, Y and U are arbitrary functions. Substituting (2.8) into (2.2a) and (2.2b) gives

2Qup + XQpp + YQpq + 2Xu = 0, (2.9a)

2Quq + XQpq + YQqq + 2Yu = 0, (2.9b)

while (2.1b) and (2.1c) become (using (2.6) and (2.9))

(Xp + Yq + 2U)Qpp + (Xq − Yp)Qpq + 2(Xx − Yy) = 0, (2.10a)

(Xq − Yp)Qpp − (Xp + Yq + 2U)Qpq − 2(Xy + Yx) = 0. (2.10b)

If we differentiate (2.9a) and (2.9b) with respect to x and y, we obtain

XxQpp + YxQpq + 2Xxu = 0, XxQpq + YxQqq + 2Yxu = 0, (2.11a)

XyQpp + YyQpq + 2Xyu = 0, XyQpq + YyQqq + 2Yyu = 0. (2.11b)

If X2
x + Y 2

x �= 0, then solving (2.6) and (2.11a) for Qpp,Qpq and Qqq gives

Qpp = −Qqq = 2(YxYxu − XxXxu)

X2
x + Y 2

x

, Qpq = −2(XxYxu + YxXxu)

X2
x + Y 2

x

.

If X2
y + Y 2

y �= 0, then solving (2.6) and (2.11b) for Qpp,Qpq and Qqq gives

Qpp = −Qqq = 2(YyYyu − XyXyu)

X2
y + Y 2

y

, Qpq = −2(XyYyu + YyXyu)

X2
y + Y 2

y

.

In any case, this shows that Qpp,Qpq and Qqq are at most functions of u only. Thus, if we let

Qpp = −Qqq = 2g1(u), Qpq = g2(u),

for arbitrary functions g1 and g2, then Q has the form

Q = g1(u)(p2 − q2) + g2(u)pq + g3(u)p + g4(u)q + g5(u), (2.12)
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where g3 − g5 are further arbitrary functions. Substituting (2.12) into (2.10) gives

2(Xp + Yq + 2U)g1 + (Xq − Yp)g2 + 2(Xx − Yy) = 0, (2.13a)

2(Xq − Yp)g1 − (Xp + Yq + 2U)g2 − 2(Xy + Yx) = 0. (2.13b)

Since both equations in (2.13) must be satisfied for all p and q, this requires that each coefficient
of p and q must vanish. This leads to

2g1X − g2Y = 0, g2X + 2g1Y = 0, (2.14a)

2g1U + Xx − Yy = 0, g2U + Xy + Yx = 0. (2.14b)

From (2.14a) we see that either g1 = g2 = 0 or X = Y = 0. If g1 = g2 = 0, then Q is
quasilinear giving that F is quasilinear which violates our non-quasilinearity condition (1.17).
If X = Y = 0, we are led to a contradiction as we imposed X2

x + Y 2
x �= 0 or X2

y + Y 2
y �= 0.

Thus, it follows that

X2
x + Y 2

x = 0, X2
y + Y 2

y = 0,

or

Xx = 0, Xy = 0, Yx = 0, Yy = 0.

Since Q is not quasilinear then from (2.10) we deduce that

(Xp + Yq + 2U)2 + (Xq − Yp)2 = 0, (2.15)

from which we obtain X = Y = U = 0. With this assignment we see from (2.8) that F = Q

and from (2.9) that Q satisfies

Qup = 0, Quq = 0, (2.16)

which has the solution

Q = G(p, q) + H(u), (2.17)

for arbitrary functions G and H. From (2.6), we find that G satisfies Gpp + Gqq = 0 while from
(2.1d), that H satisfies H ′′ = 0 giving that H = cu where c is an arbitrary constant noting
that we have suppressed the second constant of integration due to translational freedom. This
leads to our main result. Equations of the form

ut = uxx + uyy + cu + G(ux, uy),

are compatible with the first-order equations

ut = cu + G(ux, uy).

3. Conclusion

In this paper, we have considered the compatibility between a diffusion equation with a source
term in (2 + 1) dimensions and general first-order partial differential equations. We have
shown that if the source term is quasilinear then compatible equations are quasilinear while
imposing the condition that compatible equations are fully nonlinear gives rise to a large class
of compatible reaction–diffusion equations.

One naturally asks about compatibility with the diffusion equations in three dimensions.
We have considered the compatibility between

ut = uxx + uyy + uzz + Q(u, ux, uy, uz),

6
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and

ut = F(t, x, y, z, u, ux, uy, uz),

and have found that

Fpp = Fpq = Fpr = Fqq = Fqr = Frr = 0,

where p = ux, q = uy and r = uz which gives that F is linear in p, q and r regardless of Q.
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